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Abstract

Radiative heat transfer in participating particulate media is modeled using a formal volume averaging procedure.

The multiphase medium is composed of emitting–absorbing–scattering phases, i.e., a gas phase and several particle

phases. Each particle phase contains large, opaque, gray, diffuse, and spherical particles having locally the same geo-

metrical, thermophysical, and radiative properties. The resulting multiphase radiative transfer equation (MRTE) is

solved using the discrete ordinates method. The present computed results are found to be in good agreement with those

obtained using the Monte-Carlo theory and with the available experimental results. The coupling effect of the MRTE

with the averaged energy equations in a three-dimensional cavity which is differentially heated or which contains a

volumetric heat source is studied. A parametric study is performed for particle-phase and gas properties, and wall

emissivity. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The basic physical phenomenon of radiation in par-

ticulate media is the change in radiative intensity by

absorption and/or scattering which occurs during the

interaction of an electromagnetic wave or a photon with

a medium containing particles. The understanding of

this phenomenon has given rise to a large number of

works initiated by astrophysicists interested in the scat-

tering of starlight by interstellar dust. The atmospheric

science community is also concerned with the scattering

of solar radiation, the back-scattering and attenuation

of microwaves by clouds and precipitation in radar

meteorology [1], and with the net radiative impact of

clouds on the global climate [2,3]. Particulate radiation

is of primary importance in the area of fuel combustion

as is the case in coal furnaces, fluidized beds, and lu-

minous flames. For the latter, soot particles are re-

sponsible for the luminous emission from the flame. The

use of water sprays for fire suppression becomes again

the primary fire extinguishing fire agent since the pro-

duction of Halon has been prohibited by international

agreement. Light scattering can also be used as diag-

nostic technique for measurement and visualization in

gases and liquids seeded by small particles.

Radiation in particulate media can be approached by

a continuum treatment leading to the statement of a

radiative energy balance, known as the radiative transfer

equation (RTE) [4], by the direct Monte-Carlo method

[5], or by the multilayer method [6]. In the continuum

approach, it is often assumed that the average inter-

particle spacing is large compared with the wavelength

of the radiation (the criterion c=k > 0:5 is generally re-

tained) for the applicability of the independent theory

[7]. By applying this theory, the radiative properties of

the packed bed may be related to the properties of an

individual particle, neglecting interactions between the

particles. For example, Park et al. [8] and Kim et al. [9]

used the independent theory to model two-phase radia-

tion in high-porosity systems. The authors considered

the mixture of the gas and particles as a gray, emitting,

absorbing, and scattering two-phase medium. Gas

scattering is neglected and the particles are assumed to

be large (geometric range, v > 5), opaque and diffusely

reflecting spheres. Singh and Kaviany [10] compare, for
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large particles, the independent theory with the direct

Monte-Carlo method and with experiments, assuming a

radiatively non-participating gas phase. They found that

the independent theory fails for systems with low po-

rosity for both opaque and transparent particles even

when the criterion c=k > 0:5 is satisfied. On the other

hand, at high porosity ðag P 0:992Þ, it gives good pre-

dictions. The authors attribute this failure to two dis-

tinct dependent scattering effects. The first is due to the

multiple scattering which increases the effective scatter-

ing and absorption cross-sections of the particles and

the second is due to the transportation of radiation

through transparent and semi-transparent particles. In

a next paper [11], these same authors take into account

these two phenomena while retaining the contin-

uum approach. The first dependence is taken into ac-

count by scaling the optical thickness obtained from

the independent theory to give the dependent proper-

ties of the particulate medium. Transportation effects

are modeled by introducing a phase function which

depends on the exit point of the sphere and of the

number of internal reflections. A better agreement is

obtained.

The general approach proposed in the present study

is based on the application of the formal averaging

method [12] to the RTE for a multiphase medium

composed of a gas phase and large opaque spherical

particles. The resulting multiphase radiative transfer

equation (MRTE) is validated by comparing with the

Chen and Churchill experiment and the results pro-

vided by the direct Monte-Carlo method. For such

one-dimensional comparison, the gas is assumed to be

radiatively non-participating (i.e., transparent) and ab-

sorbing, diffusely scattering particles are considered. The

Nomenclature

Ak specific wetted area of phase k ðAk ¼ akrkÞ
ðm�1Þ

c average interparticle clearance (m)

cp specific heat ðJ kg�1 K�1Þ
d particle diameter (m)

g weighting function

G average incident radiation ðW m�2Þ
h conductive heat transfer coefficient

ðW m�2 K�1Þ
L radiative intensity ðW m�2 sr�1Þ
Lx; Ly ; Lz dimensions of the enclosure in the x-, y-,

and z-directions (m)

n unit surface normal (pointing away from

surface into the medium)

nk number of particles of particle phase k per

unit volume ðm�3Þ
N number of particle phases

Pm Legendre polynomials

Pk total number of particles of particle phase k
qc conductive heat flux ðW m�2Þ
qr radiative heat flux ðW m�2Þ
spk surface of a particle of particle phase k ðm2Þ
T temperature (K)

vpk volume of a particle of particle phase k ðm3Þ
x; y; z Cartesian coordinates

a phase volume fraction

b extinction coefficient ðm�1Þ
dk mean free path length for radiation of par-

ticle phase k ðmÞ
e emissivity

h polar angle, measured from the z-axis

k wavelength (m), thermal conductivity

ðW m�1 K�1Þ

l; g; n direction cosines

q density ðkg m�3Þ
r Stefan–Boltzmann constant ðW m�2 K�4Þ
rk surface area to volume ratio of particle

phase k ðm�1Þ
s optical thickness

U phase function

u azimuthal angle, in the x–y plane, measured

from the x-axis

v size parameter ð¼ pdk=kÞ
w scattering angle between incident and scat-

tering directions

x albedo

X directional vector of radiative intensity

Superscripts

w; e; s; n; b; f control-volume faces

m discrete direction

Subscripts

g gas phase

k particle phase k
p particle

w wall value

b blackbody value

Symbols

Dx;Dy;Dz cell dimensions

DV cell volume

h i weighted-average value

þ;� into positive or negative x-directions

� non-dimensional value
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discrete ordinates method is used to solve the MRTE.

After applying the formal averaging procedure to the

energy equations for each phase, the coupling with the

MRTE is considered to study combined conductive

and radiative transfers in a three-dimensional enclo-

sure which is differentially heated or which contains a

high-temperature source (simulating fire in a room or

combustion process). In this study, gas and particles

are at rest and emission, absorption, and scattering are

considered for all phases. Spherical particles are as-

sumed to be thermally thick (uniform temperature

distribution inside the particle). The DOM is also used

to solve the MRTE while the finite-volume method and

the fourth-order Runge–Kutta algorithm are used for

solving the energy equation for the gas and parti-

cle phases, respectively. The influence of several para-

meters, such as particle-phase specific surface, gas

scattering phase function, particle and wall emissivity is

examined.

2. Analysis

In the present approach, the multiphase medium is

composed of a gas phase and particles of various kinds.

In a small control volume V, N particle phases coexist

with a gas phase. Each particle phase consists of parti-

cles having the same geometrical (e.g., shape, size, and

arrangement), thermophysical, and radiative properties,

providing in this way the same response to external

constraints. The volume fraction of phase k is defined as
ak ¼ Vk=V , where Vk is the volume occupied by phase k
in volume V. In the same way, the fractional porosity,

also called the void fraction, is defined as ag ¼ Vg=V .
From these definitions, we have

ag þ
XN
k¼1

ak ¼ 1: ð1Þ

The formal averaging method used in the present paper

was first introduced by Anderson and Jackson [12] and

used later by Gough and Zwarts [13] in a slightly dif-

ferent form. This consists in replacing point variables

such as the gas temperature, the radiative intensity, or

the temperature of particle matter at a specified point,

by local mean variables obtained by averaging the local

variables over regions which are large enough to contain

many particles but small compared with the scale of

macroscopic variations from point to point in the sys-

tem. Following Anderson and Jackson [12], we shall

define a weighting function which depends solely on

spatial coordinates. Some definitions and approxima-

tions are needed for the derivation of macroscopic

equations using the formal averaging method.

Let a weighting function gðrÞ, defined for r > 0, with

the following mathematical properties:

1. gðrÞP 0 for all r, and g decreases monotonically with

increasing r,

2. gðrÞ possesses derivatives gnðrÞ of all orders for each
values of r,

3.
R
V1

gnðrÞdV ¼ 1 exists for all values of n, where r de-

notes the distance from a point in a three-dimen-

sional space, and V1 represents the whole space, and

4. gðrÞ is normalized so that
R
Vg1

gnðrÞdV ¼ 1.

The local mean void fraction, ag, at location x and time t

is defined as

agðx; tÞ ¼
Z
Vg1

gðjx� yjÞdVy ð2Þ

where Vg1 is the volume occupied by the gas phase at

time t and dVy is an elemental volume in the neighbor-

hood of point y. In a similar manner, the local mean

volume fraction of particle phase k is defined by

akðx; tÞ ¼
Z
Vk1

gðjx� yjÞdVy : ð3Þ

Local mean values of any gas property, ag, and any

particle-phase property, ak , are given by

aghagiðx; tÞ ¼
Z
Vg1

agðy; tÞgðjx� yjÞdVy ; ð4Þ

akhakiðx; tÞ ¼
Z
Vk1

akðy; tÞgðjx� yjÞdVy : ð5Þ

2.1. Multiphase radiative transfer equation

The local instantaneous equation of radiative trans-

fer for an emitting–absorbing–scattering gray contin-

uum may be written [4]

r � LX
g X

� �
þ bgL

X
g ¼ ð1� xgÞbgLbðTgÞ þ

xgbg

4p


Z
4p
LX0

g UXX0

g dX0: ð6Þ

Multiplying both sides by the weighting function and

integrating over the whole region occupied by gas, we

getZ
Vg1

g r � LX
g X

� �n
þ bgL

X
g

o
dVy

¼ ð1� xgÞbg

Z
Vg1

gLbðTgÞdVy þ
xgbg

4p


Z
Vg1

g
Z
4p
LX0

g UXX0

g dX0
� 	

dVy ; ð7Þ

where the weighting function g has been assumed to

decrease rapidly enough for integration to be done over
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a volume containing a large number of particles but

small enough compared with the dimensions of the

problem for the physical characteristics of the particu-

late and gas phases (i.e., xg, bg, ek , and rk) to be assumed

constant.

Using mathematical theorems given in Appendix A

and permuting integrals in the last term of the right-

hand side yield

r � ag LX
g

D E
X

h i
þ
XN
k¼1

XPk
p¼1

Z
spk

gLX
g X � ng dsþ agbg LX

g

D E

¼ agð1� xgÞbghLbðTgÞi þ
agxgbg

4p

Z
4p

LX0

g

D E
UXX0

g dX0:

ð8Þ

The second term of the left-hand side of this equation

corresponds to the interactions between the gas and

the particle phases. To evaluate this term we consider

an absorbing, emitting and scattering particle of volume

vpk and surface spk and on this surface, a surface-area

element ds described by the polar and azimuthal angles,

h and u. The azimuthal direction corresponds to direc-

tion X.

At this stage, the assumption of large (geometric

range) particles is used. Diffraction is neglected and

treated as transmission, as usually done in heat transfer

problems [4]. To carry out integration, the sphere sur-

face is divided into two:

• sþpk , h 2 ½0; p=2�,
• s�pk , h 2 ½p=2; p�.

Over sþpk: The energy passing through a surface ele-

ment in direction X is equal to the energy emitted by the

particle in direction X plus the energy reflected by its

surface in direction X. This balance leads to the relation

LX
g ¼ ekLbðTkÞ þ EX

s : ð9Þ

The energy reflected (or scattered) per unit of surface

and of solid angle of direction X0 in direction X is equal

to ð1� ekÞLX0
g UXX0

k =4p.
By integrating over all the incident directions, we

obtain

EX
s ¼

Z
4p
ð1� ekÞLX0

g

UXX0

k

4p
dX0: ð10Þ

It follows that

LX
g ¼ ekLbðTkÞ þ

Z
4p
ð1� ekÞLX0

g

UXX0

k

4p
dX0: ð11Þ

Over s�pk: All the energy which passes through a sur-

face element in direction X is either absorbed by the

particle or reflected by this particle in a direction X0.

The relation sought is thus written as

Z
spk

gLX
g X � ng ds

¼
Z
sþpk

gekLbðTkÞX � ng ds

þ
Z
sþpk

g
Z
4p
ð1

"
� ekÞLX0

g

UXX0

k

4p
dX0

#
X � ng ds

þ
Z
s�pk

gLX
g X � ng ds: ð12Þ

Assuming the weighting function and the radiative in-

tensity vary little at the particle surface, we haveZ
s�pk

gLX
g X � ng ds ¼

1

4
spkgpkLX

g ð13Þ

andZ
sþpk

gLX
g X � ng ds ¼ � 1

4
ekspkgpkLbðTkÞ

� 1� ek
16p

spkgpk

Z
4p
LX0

g UXX0

k dX0: ð14Þ

By summing over all the particles of phase k, it follows
(Appendix A):

XPk
p¼1

Z
s�pk

gLX
g X � ng ds �

akrk

4
LX
g

D E
ð15Þ

andZ
sþpk

gLX
g X � ng ds � � akekrk

4
hLbðTkÞi � akð1� ekÞrk

16p


Z
4p

LX0

g

D E
UXX0

k dX0: ð16Þ

The MRTE can finally be written as

r � ag LX
g

D E
X

h i
þ
XN
k¼1

akrk

4
LX
g

D E
þ agbg LX

g

D E

¼ agð1� xgÞbghLbðTgÞi þ
XN
k¼1

akekrk

4
LbðTkÞh i

þ
agxgbg

4p

Z
4p

LX0

g

D E
UXX0

g dX0 þ
XN
k¼1

akð1� ekÞrk

16p


Z
4p

LX0

g

D E
UXX0

k dX0: ð17Þ

To solve the MRTE, boundary conditions at the walls

are needed. The exchanges between the walls and the

medium will be assumed to occur solely via the gas. Only

diffuse gray wall conditions will be used in this paper:
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LX
g

D E
¼ ewhLbðTwÞi þ

1� ew
p

Z
X0 �nw<0

LX0

g

D E
jX0 � nwjdX0:

ð18Þ

To determine the divergence of the radiative flux in the

gas phase given by

hqrgi ¼
Z
4p

LX
g

D E
XdX: ð19Þ

The MRTE is integrated over all the directions, that is,

for X varying from 0 to 4p. Examination of the left-

hand member of the MRTE shows that the extinction

coefficients include an absorbed part and a part scat-

tered from the direction X into another direction X0. By

summing over all the directions the scattered part is

cancelled with the last two terms of the right-hand

member of the MRTE such that only the absorbed part

remains non-zero in the equation sought.

r � ½aghqrgi�

¼ 4pagð1� xgÞbghLbðTgÞi � agð1� xgÞbg

Z
4p

LX
g

D E
dX

þ
XN
k¼1

pakrkekhLbðTkÞi �
XN
k¼1

akrkek
4

Z
4p

LX
g

D E
dX:

ð20Þ

2.2. Coupling with conduction

Since the temperature distribution is assumed to be

uniform inside the particle (thermally thin assumption),

the conduction in the gas phase is only considered. An

evaluation of Mazza et al. [14] suggested that a good

criterion to ignore finite particle conductivity effects is

kk=kg > 30. In the present work, all phases are assumed

to be at rest. Opaque particles are considered.

On the other hand, the pseudo-transient method is

used to solve the energy equations. For steady problems,

an alternative to the solution of the algebraic equations

produced by discretizing the steady problem is to con-

struct an equivalent unsteady problem and to march the

transient solution until the steady-state is reached. Time

then plays the role of an iteration parameter. This ap-

proach to the steady-state is found to be more rapid in

all parts of the computational domain. Since the tran-

sient solution is not of interest, time-step is chosen to

minimize the number of time-steps to convergence and

to maintain the accuracy and the stability of the evolving

equations. This is the motivation for the pseudo-tran-

sient method.

Before applying the formal averaging method, the

point energy equations for the gas and particle phases and

the associated jump condition at the particle–gas interface

are obtained from the method proposed by Delhaye [15]

by considering a small control volume containing both

the gas phase and one particle phase (Fig. 1). The heat

balance equation over this volume yieldsZ
Vg

qgcpg
oTg
ot

dV þ
Z
Vk

qkcpk
oTk
ot

¼ �
Z
Ag

ðqcg þ qrgÞ � ng ds�
Z
Ak

qrk � nk ds: ð21Þ

Introducing the fluxes at the gas–particle interface and

applying the Gauss theorem, we obtainZ
Vg

qgcpg
oTg
ot

dV þ
Z
Vk

qkcpk
oTk
ot

þ
Z
Vg

r � ðqcg þ qrgÞdV

þ
Z
Vk

r � qrk dV ¼
Z
AI

fðqcg þ qrgÞ � ng þ qrk � nkgds:

ð22Þ

Providing that this equation is satisfied at every point

and every time, the local instantaneous equations are:

• Gas phase:

qgcpg
oTg
ot

¼ �r � qrg �r � qcg: ð23Þ

• Particle phase (k 2 f1;Ng):

qkcpk
oTk
ot

¼ �r � qrk : ð24Þ

• Interface (k 2 f1;Ng):
ðqcg þ qrgÞ � ng þ qrk � nk ¼ 0; ð25Þ

where

qcg ¼ �kgrTg; ð26Þ

qrg ¼
Z
4p
LX
g XdX: ð27Þ

The use of the formal averaging method gives

agqgcpg
ohTgi
ot

¼ �r � ½agðhqrgi þ hqcgiÞ�

�
XN
k¼1

XPk
p¼1

Z
spk

gðqrg þ qcgÞ � ng ds; ð28Þ

Fig. 1. Sketch of a control volume.
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akqkcpk
ohTki
ot

¼ �r � ½akhqrki� �
XPk
p¼1

Z
spk

gqrk � nk ds:

ð29Þ

Since for opaque particles, r � ½akhqrki� ¼ 0, using the

interface condition we can write

akqkcpk
ohTki
ot

¼
XPk
p¼1

Z
spk

gðqrg þ qcgÞ � ng ds: ð30Þ

The conductive flux term can be developed (see Ap-

pendix A):

aghqcgi ¼ �kghrTgi

¼ �kgrðaghTgiÞ �
XN
k¼1

XPk
p¼1

Z
spk

gTgng ds ð31Þ

which, assuming that the gas temperature at the surface

of a particle of phase k is constant, reduces to

aghqcgi ¼ �kgrðaghTgiÞ: ð32Þ

These exchanges will be assumed to be constant over all

the gas–particle interface of a particle of phase k such

that

XPk
p¼1

Z
spk

gqcg � ng ds ¼ AkhkðhTgi � hTkiÞ: ð33Þ

Since the particles are at rest, hk ¼ kgNuk=dk is calculated
by assuming Nusselt number equal to 2.

Radiative exchanges at the interface may be ex-

pressed by integrating Eq. (12) over all directions and by

summing over all the particles of phase k,XPk
p¼1

Z
spk

gqrg � ng ds ¼ �pakrkekhLbðTkÞi

þ akrkek
4

Z
4p

LX
g

D E
dX: ð34Þ

It follows that the heat equations for the gas phase and

the particle phases are written as

agqgcpg
ohTgi
ot

¼ kgM½aghTgi� þ ð1� xgÞbgaghGi

� 4agð1� xgÞbgr T 4
g

D E

�
XN
k¼1

AkhkðhTgi � hTkiÞ; ð35Þ

akqkcpk
ohTki
ot

¼ akrk

4
ekhGi � akrkekr T 4

k

� �
þ AkhkðhTgi � hTkiÞ; ð36Þ

where the average incident radiation is

G ¼
Z
4p
LðXÞdX: ð37Þ

3. Numerical resolution

To solve the MRTE the discrete ordinates method

(DOM) is used [16]. DO solutions can be obtained using

Sn approximations. This means that radiation calcula-

tions are based on solving the RTE in M ¼ nðnþ 2Þ
discrete solutions to which a set of weights is attached.

In the current study, the ordinate directions and qua-

dratic weighting factors (lm, gm, nm, and wm) have been

taken from the well-known TWOTRAN II code [17].

The MRTE is integrated over a control volume given in

Fig. 2. By setting

Sm
p ¼

XN
k¼1

akrk

4
ekhLbðTkÞi þ ag ð1

�
� xgÞbgLbðTgÞ

�

þ
XN
k¼1

akrkð1� ekÞ
16p

XM
m0¼1

Lm0p
g

D E
Umm0

g xm0

þ
agxgbg

4p

XM
m0¼1

Lm0p
g

D E
Umm0

g xm0 : ð38Þ

The discretized MRTE is for m 2 f1;Mg:

lmDyDz ae
ghLme

g i
h

� aw
g Lmw

g

D Ei
þ gmDxDz an

g Lmn
g

D Eh
� as

g Lms
g

D Ei
þ nmDxDy af

g Lmf
g

D Eh
� ab

g Lmb
g

D Ei
þbT Lmp

g

D E
DV ¼ Sm

p DV ; ð39Þ

where bT ¼
PN

k¼1 akrk=4þ agbg. The variable weighted

scheme of Lathrop [18] is used to relate the facial in-

tensities at the boundary of control volume to the cell

center intensity

Lmp
g ¼ XLme

g þ ð1� X ÞLmw
g ¼ YLmn

g þ ð1� Y ÞLms
g

¼ ZLmf
g þ ð1� ZÞLmb

g ð40Þ

The expressions of X, Y and Z are given by

Fig. 2. Schematic of grid points and control volume for the

computation.
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1� X ¼ bmcm
amð2bm þ 2cm þ bmcmÞ

and

X ¼ max½X ; 0:5�;
ð41Þ

1� Y ¼ amcm
bmð2am þ 2cm þ amcmÞ

and

Y ¼ max½Y ; 0:5�;
ð42Þ

1� Z ¼ bmam

cmð2bm þ 2am þ bmamÞ
and

Z ¼ max½Z; 0:5�;
ð43Þ

where

am ¼ bTDx
lm

; bm ¼ bTDy
gm

; cm ¼ bTDz
nm

: ð44Þ

The luminance value at the center of the cell is given by

Lmp
g ¼ fCx½Ae þ Aw�Lmw

g þ Cy ½An þ As�Lms
g

þ Cz½Af þ Ab�Lmb
g þ Sm

p DV g=fCxa
e
g þ Cya

n
g

þ Cza
f
g þ bTDV g ð45Þ

with

Cx ¼
lmDyDz

X
; Cy ¼

gmDxDz
Y

; Cz ¼
nmDxDy

Z
;

Ae ¼ ae
gð1� X Þ; Aw ¼ aw

gX ; An ¼ an
gð1� Y Þ;

As ¼ as
gY ;

Af ¼ af
gð1� ZÞ and Ab ¼ ab

gZ:

ð46Þ

Later in the presentation the S � 4 to S � 16 will be

applied. By solving the MRTE, the average incident

radiation G field can be obtained.

The energy equation for particle phase k is an ordi-

nary differential equation which is solved with the

fourth-order Runge–Kutta scheme.

For the gas phase, the energy equation is a partial

differential equation which is discretized on an uniform

grid using a finite-volume procedure along with a sec-

ond-order backward Euler scheme for time integration.

Diffusion terms are approximated using a second-order

central difference scheme. The resulting system of linear

algebraic equations is then solved iteratively using the

tri-diagonal matrix algorithm (TDMA) [19].

The present study concerns only steady cases. The

thermal equilibrium which characterizes them is ob-

tained by an iterative process. The process is repeated

until the following convergence criterion is satisfied for

the particle-phase temperature

max jT nþ1
k

�
� T n

k j=T n
k

�
6 0:0001: ð47Þ

For the results reported, convergence was excellent,

with no need for any relaxation. A fully converged run,

using the S-12 approximation, the 20 11 11 grid,

and a particle-phase specific surface of 3 m�1, required

54 sweeps with a total CPU time of 30 mn on a 1 GHz

Athlon PC.

4. Results and discussion

4.1. Comparison of METR with Monte-Carlo simulations

and Chen and Churchill experiments

Results predicted from our model are compared to

the experimental results of Chen and Churchill [20] and

to the results of the Monte-Carlo simulations for one-

dimensional beds of large, opaque, gray and spherical

particles. For this we will use experimental situations

or numerical simulations by the Monte-Carlo method

presented in [10]. In the present calculations, S � 16 ap-

proximations are used.

In the experiments of Chen and Churchill, radiant

transmission was measured through isothermal beds of

steel spheres ðdk ¼ 4:7625 mm, ak ¼ 0:4) using an emis-

sivity of 0.4. Particles are considered to be reflecting,

absorbing, and non-emitting. In our model and in the

independent model used by Singh and Kaviany [10],

diffusely reflecting spheres are considered while diffrac-

tion is neglected. For diffuse scattering, the phase func-

tion is given by [4]

UXX0

k ¼ 8

3p
ðsinw � w coswÞ ð48Þ

This phase function is represented in Fig. 3. The

transmittance through such a medium is represented in

Fig. 4. MRTE predictions are in better agreement with

the experimental results. As suggested by Chen and

Churchill [20], the deviations can be explained by the

uncertainties concerning the emissivity of the steel

spheres as a result of its temperature dependency and the

presence of an oxide coating [20]. In fact the first couple

of layers might be at a higher temperature than the rest

of the bed because of their proximity to the source [10].

Fig. 3. Scattering phase functions.
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A comparison with Monte-Carlo simulations is

also presented assuming diffusely reflecting, absorbing,

and non-emitting spheres with an emissivity of 0.3. The

studied configurations correspond, for the couple ðag;
dkÞ, to the following values: (0.476,1.0), (0.732,0.8),

(0.935,0.5), (0.992,0.25). According to the independent

theory the following systems are exactly equivalent [10].

In Fig. 5 the transmittances in these media calculated by

the MRTE and by the Monte-Carlo method are repre-

sented versus the independent optical thickness sind ¼
1:5ð1� agÞx=dk . This quantity sind is obtained from the

definition of the optical thickness of an absorbing and

emitting medium assuming a mono-size, large (diffrac-

tion can thus be neglected; i.e., the extinction efficiency is

equal to 1), uniformly distributed particles [10]. The

results supplied by the independent theory are also

plotted. The results supplied by the MRTE are in very

good agreement with those obtained by the Monte-

Carlo method. The theory of independent scattering

gives results in good agreement with Monte-Carlo sim-

ulations only for high porosity [10].

4.2. Sensitivity study

4.2.1. Problem description

We consider here the coupling of radiation and con-

duction in a three-dimensional rectangular enclosure

(Fig. 6). The dimensions of the enclosure are 2 m
1 m  1 m. Different grid sizes were tested to ensure that

the solution was independent of the grid density. A grid

size of 20 11 11 is used for all calculations. The west

wall ðx ¼ 0Þ is at 1000 K with the remaining walls

maintained at 300 K. The enclosure walls are assumed to

be black ðew ¼ 1Þ. In this sensitivity study a single particle
phase is taken into account (N ¼ 1), for if we consider a

set of N particle phases, it is always possible to find an

equivalent particle phase whose properties

aeq ¼
XN
k¼1

ak ; req ¼
PN

k¼1 akrk

aeq

will give identical results. This assertion is only possible

if the particles which make up the particle phases have

the same emissivity. Both phases whose geometrical and

thermophysical properties for both phases are given in

Table 1 participate in absorption, emission and scatter-

ing of radiation. The optical thickness of the multiphase

medium and of the particle phase in the direction i may

be defined as

si ¼ agbg

�
þ akrk

4

�
Li;

Fig. 5. Transmittance from a packed bed: comparison of the

MRTE predictions with the Monte-Carlo direct simulation and

independent theory.

Table 1

Geometrical parameters and thermophysical properties of the

gas phase and of the particle phase k

Gas phase Particle phase

kg ¼ 0:0035 W m�2 K�1 qk ¼ 510 kg m�3

qg ¼ 0:8 kg m�3 cpk ¼ 1380 J kg�1 K�1

cpg ¼ 1:02 J kg�1 K�1 ek ¼ 1

bg ¼ 0:5 m�1 dk ¼ 0:002 m ) rk ¼ 3000 m�1

xg ¼ 1 ak ¼ 0:001

Fig. 6. Schematic diagram of the enclosure.Fig. 4. Transmittance from a bed of steel spheres: comparison

of the MRTE predictions with the Chen and Churchill experi-

ments.
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ski ¼
akrk

4
Li;

and the mean free path length for radiation through the

particle phase is

dk ¼
4

akrk
¼ 1:33 m:

4.2.2. Quadrature effects

Fig. 7 shows the dimensionless centerline net flux

versus x� ¼ x=Lx predicted using S � 4 to S � 16 ap-

proximations. The ray effects appear distinctly in the

shape of curves. The lack of accuracy of quadratures

S � 4 and S � 6 is clear. If S � 16 is taken as a reference

solution the average deviations of the solutions provided

by the other quadratures are given in Table 2.

The best compromise between accuracy and an ac-

ceptable computing time is the quadrature S � 12. In so

far as a single qualitative study is undertaken, the ap-

proximation S � 12 will subsequently be used.

4.2.3. Effects of the particle-phase specific surface

In this section, the influence of the specific surface of

the particle phase is considered when both phases are

considered to be absorbing–emitting but non-scattering.

It depends only on two parameters, namely the particle-

phase number density nk and the particle surface spk:

Ak ¼ akrk ¼ nkvpkrk ¼ nkspk : ð49Þ

An increase of one of this two parameters causes

the specific surface to increase. Three cases are consid-

ered:

Ak ¼ 0:3 m�1 ) skx ¼ 0:15 ) dk ¼ 13:33 m; ð50Þ

Ak ¼ 3 m�1 ) skx ¼ 1:5 ) dk ¼ 1:33 m; ð51Þ

Ak ¼ 30 m�1 ) skx ¼ 15 ) dk ¼ 0:133 m: ð52Þ

This leads to a decrease of the mean free path length

for radiation in the particle phase dk . It follows that the

radiative intensity is attenuated over a shorter distance

as shown on the incident radiative flux along the vertical

midline at the east cold wall given in Fig. 8(a). On the

other hand, the opposite phenomena occur on the hot

wall Fig. 8(b).

When the optical thickness is increased, the flux in

direction xþ is weaker (Fig. 8(c)) while the flux in di-

rection x� increases as a result of greater absorption in

the particle phase and thus a higher re-emission, par-

ticularly near the hot wall (Fig. 8(d)). The competition

between the transmission and emission phenomena ex-

plains the incident radiative field’s behavior given in Fig.

8(e).

4.2.4. Gas scattering effects

The effects of isotropic and anisotropic gas scattering

are examined and the scattering albedo is taken as

xg ¼ 0:7. In the anisotropic case, the gas diffusion is

assumed to come from medium-size particles (0:3 <
v < 5). In this case, gas scatters anisotropically using

Legendre phase function expansion [4].

When expressing the phase function as a finite series

approximation of Legendre polynomials, a forward ðF 1Þ
or a backward ðB2Þ scattering may be described. The

scattering phase functions for F 1 and B2 proposed by

Kim et al. [21] are used.

UXX0

g ¼ 1þ
X1
m¼1

amPmðcoswÞ: ð53Þ

The values of polynomial coefficient am correspond-

ing to F 1 and B2 used are shown in Table 3. The dif-

ferent scattering phase functions are plotted in Fig. 3.

Fig. 9(a) and (b) show the dimensionless centerline

radiative flux in the xþ and x� directions. The results

obtained by functions F 1 and B2 are in agreement with

their respective forward and backward scattering char-

acters. This is confirmed by Fig. 9(c) and (d) which

represent the incident fluxes at the center of the hot and

cold walls, respectively, versus y� ¼ y=Ly . The results

obtained without and with isotropic scattering are vir-

tually identical. The negligible influence of the phase

function on the gas temperature distribution is illus-

trated in Fig. 9(e). Deviations between non-scattering

Fig. 7. SN approximation effects on the dimensionless center-

line net radiative flux in the x-direction.

Table 2

S � 8 to S � 14 deviations vs. S � 16 in the calculation of the

dimensionless centerline net radiative flux in the x-direction

Quadrature Mean deviation

(%)

Maximum deviation

(%)

S � 14 1 3.7

S � 12 4.5 8.6

S � 10 6.3 14.3

S � 8 8.8 21.8
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and scattering conditions are low (6% for F 1 and 2% for

B2) despite the high albedo. As pointed out by Park et al.
[8], this behavior can be explained by the scattering-in-

duced redistribution of the radiative intensity and the

isotropic emission.

The effects of scattering are studied when a high-

temperature source is placed in the enclosure. A uniform

volumetric heat source of 5 kW m�3 is considered. All

the enclosure walls are assumed to be black and cold

(300 K). In this case, the medium evacuates the heat

towards the wall by emitting strongly and the conduc-

tion exchanges between the particles and the gas are no

longer negligible. As shown in Fig. 10 predictions of the

centerline temperature distribution for either isotropic,

Fig. 8. Effects of particle-phase optical thickness on the dimensionless incident radiative flux (a) at the cold wall, (b) at the hot wall, on

the dimensionless radiative flux (c) in the positive x-direction, (d) in the negative x-direction, and (e) on the dimensionless average

incident radiation.
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F 1 or B2 scattering conditions are qualitatively the

same. As observed by Kim and Lee [21] for a gaseous

medium, scattering anisotropy is ineffective when sym-

metrical conditions are imposed. Unlike the previous

case, the results obtained with and without isotropic

scattering differ noticeably. The baseline case of no

scattering results in a higher gas absorption which leads

to a stronger emission. The energy released by the vol-

umetric source is evacuated more easily and causes a

smaller temperature increase.

4.2.5. Particle scattering effects

The particles here will be considered as diffuse gray

and the diffraction is neglected for the reasons given

before. The diffuse reflection for large spherical particles

is modeled by the phase function given by Eq. (48).

The effects of the particle reflectivity ð1� ekÞ on the di-

mensionless incident flux profiles at the hot and cold

walls are illustrated in Fig. 11(a) and (b). The results

obtained for emissivities of 0.9 and 1 are close with

average deviations of 2.1% and 1.3% for the hot

Fig. 9. Effects of gas scattering phase functions on the dimensionless radiative flux (a) in the positive x-direction and (b) negative

x-direction, on the dimensionless incident radiative flux (c) at the hot wall, (d) at the cold wall, and (e) on the gas temperature dis-

tribution – differentially heated enclosure.
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and cold walls, respectively. In addition, the centerline

temperature distribution is fairly sensitive to this pa-

rameter since the maximum deviation is less than 3%

(Fig. 11(c)). These findings reinforce the mathematical

validity of the approximation that the particles, whose

emissivity is greater than 0.7, can be considered to be

black.

For the heat source case, this sensitivity becomes

more pronounced (Fig. 12). Maximum deviations vs. the

blackbody approximation are given in Table 4.

Table 3

Polynomial coefficients of the Legendre expansion for the F 1
and B2 scattering phase functions

F 1 B2

a0 ¼ 1 a0 ¼ 1

a1 ¼ 2:53602 a1 ¼ �1:2
a2 ¼ 3:56549 a2 ¼ 0:5
a3 ¼ 3:97976

a4 ¼ 4:00292

a5 ¼ 3:66401
a6 ¼ 3:01601

a7 ¼ 2:23304

a8 ¼ 1:30251

a9 ¼ 0:53463
a10 ¼ 0:20136

a11 ¼ 0:0548

a12 ¼ 0:01099

Fig. 10. Effects of gas scattering phase functions on the gas

temperature distribution – enclosure with a high-temperature

source.

Fig. 11. Particles emissivity effects on the incident radiative flux (a) at the hot wall and (b) at the cold wall, and (c) on the gas

temperature distribution – differentially heated enclosure.
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4.2.6. Effects of the wall emissivity

The influence of the emissivity of the walls x ¼ 0 and

x ¼ Lx on the temperature profile is considered and

plotted in Fig. 13. As expected, the influence of the wall

emissivity is great. It is clear that a reduction in the

emissivity involves a reduction in the temperature field.

It is found that a change in wall emissivity from 0.3 to

0.7 may cause a 21% temperature difference.

5. Conclusions

In the present work, radiative transfers in multiphase

media composed of a gas phase and several particle

phases are modeled using a formal averaging procedure.

A MRTE which considers absorption, emission and

scattering for each phase is derived. Large, spherical,

opaque particles are considered. The MRTE is solved

by the discrete ordinate method and good quantitative

agreement is obtained with experiments and Monte-

Carlo simulations. The multiphase energy balance equa-

tion for both particle and gas phases are obtained by

using the same averaging method and then coupled to

the MRTE to describe combined radiative and con-

ductive heat transfers in multiphase media. Results are

presented for a differentially heated three-dimensional

rectangular enclosure and for a three-dimensional en-

closure containing a high-temperature heat source. The

following conclusions can be drawn:

• The multiphase model solutions follow correct

trends.

• The parameter which characterizes the action of the

particle phases is the specific exchange surface. An in-

crease in this parameter reduces the transparency of

the medium and the radiative energy is trapped near

the hot wall.

• The gas scattering was modeled by phase functions

F 1 and B2. The model with isotropic scattering really
differs (5.5%) from the non-scattering model in the

presence of a volumetric source only. Moreover the

results obtained with the forward scattering F 1 and

backward B2 are close (<7%) to those obtained with

the isotropic scattering model.

• To simulate the particle-phase scattering the dif-

fuse reflection model was used. It would seem that

for emissivity of 0.9 (even 0.7), a real particle may

be considered at a first approximation to be black

body.

A logical follow up to this study will be to envis-

age non-opaque particles and thus to have a general

model.

Appendix A. Mathematical theorems used in the formal

averaging method

The use of the weighting function leads to a multi-

phase formulation of the Leibnitz rule and Gauss the-

orem.

For the gas phase

Z
Vg1

g
oag
oyi

dV ¼ o

oxi
ðaghagiÞ þ

XN
k¼1

XPk
p¼1

Z
spk

gagni ds;

Fig. 13. Wall emissivity effects on the gas temperature distri-

bution.

Fig. 12. Particles emissivity effects on the gas temperature dis-

tribution – enclosure with a high-temperature source.

Table 4

Maximum deviation in gas temperature distribution for differ-

ent particle emissivities vs. that obtained with black particles –

enclosure with a high-temperature source

Particle emissivity Deviation vs. blackbody (%)

0.9 <1

0.7 1.8

0.5 3.4

0.3 5.6

0.1 8.6

0 10.9
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Z
Vg1

g
oag
ot

dV ¼ o

ot
ðaghagiÞ �

XN
k¼1

XPk
p¼1

Z
spk

gagvini ds;

in which vi is the local velocity component at spk. For the
particle phase k,

XPk
p¼1

Z
Vk1

g
oak
oyi

dV ¼ o

oxi
ðakhakiÞ þ

XPk
p¼1

Z
spk

gakni ds;

XPk
p¼1

Z
Vk1

g
oak
ot

dV ¼ o

ot
ðakhakiÞ þ

XPk
p¼1

Z
spk

gakvini ds:

In the present study vi ¼ 0. Moreover, in order to ex-

press particle/gas interaction terms and assuming that

the weighting function varies little at the surface of a

single particle, we can write [12] for any property A:

XPk
p¼1

Z
spk

gðrÞAðy; tÞds �
XPk
p¼1

gpk

Z
spk

Aðy; tÞds: ðA:1Þ

In addition, if A is considered as constant at the particle

surface, we can write

XPk
p¼1

Z
spk

gðrÞAðy; tÞds �
XPk
p¼1

gpkspkAp ðA:2Þ

¼
XPk
p¼1

gpkvpkðrkApÞ � akhrkAi:

ðA:3Þ
The conjugate action of the two topological parameters

is so pointed out.
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